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Figure 1. FTY720 and conformationally co
A scalable and enantioselective synthesis of a potent S1P1 agonist containing two stereogenic centers on a
cyclopentane ring is described. Control of the absolute chirality of an amino alcohol precursor, generated
via a robust phase-transfer catalyzed alkylation protocol, allows for substrate directed hydrogenation to
install the second stereogenic center providing access to gram-quantities of compound 2.

� 2009 Elsevier Ltd. All rights reserved.
Agonism of sphingosine-1-phosphate (S1P) receptors, specifi-
cally the S1P1 receptor, has been linked to many diverse cellular
functions including sequestration of lymphocytes into secondary
lymph organs thereby preventing them from causing an autoim-
mune response.1 FTY720 represents a new class of immunomodu-
lating agents that act via agonism of the S1P1 receptor and has
been shown to be active in Phase II clinical trials for multiple scle-
ll rights reserved.
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rosis.2 Compound 1 (see Fig. 1) is a conformationally constrained
analog of FTY720 that has been shown to induce sequestration of
lymphocytes in mice.3 Two diastereomers, (1R,3S) (2) and (1R,3R)
(3, Fig. 1), have been prepared in milligram-quantities and con-
firmed to be the stereoisomers that are active in vivo. Herein, we
disclose a gram-scale, enantioselective route to one of the active
stereoisomers which provides intermediates suitable for analog
synthesis to establish structure–activity relationships.

A synthetic route was chosen that would set the conserved (1R)
stereogenic center of the two diastereomers that induce lympho-
penia while allowing for late-stage induction of the benzylic ste-
reocenter through either chirality transfer or reagent control (see
Scheme 1). In addition, an alkene such as compound 4, which could
be prepared via ring-closing metathesis (RCM), would likely be
amenable to stereoselective hydrogenation allowing access to
either the (3R) or (3S) stereoisomers.
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Scheme 1. Retrosynthesis of the (1R,3S) isomer.



Table 1
Evaluation of hydrogenation catalysts
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Entry Compound H2 (psi) Catalysta % convb (% de)

1 7 50 Ir(COD)ThrePHOX 0c

2 7 970 Ir(COD)ThrePHOX 0c

3 1-Methylstilbene 50 Ir(COD)ThrePHOX 100c,d

4 7, 1-Methylstilbene 50 Ir(COD)ThrePHOX 0, 100c,d

5 7 15 Ir(COD)Py(PCy3) 100 (33)c

6 7 15 Pd/BaSO4 100 (70)e

7 7 15 1% Pt/C 100 (20)e

8 7 15 5% Pd/CaCO3 100 (50)e

9 7 15 PtO2 100 (33)e

10 7 15 2% Pd/SrCO3 100 (60)e

a All reactions were conducted at rt using 5 mol % of catalyst.
b Diastereomeric excess as measured by chiral HPLC.
c Reaction run in CH2Cl2.
d >95% ee was observed for the reduction of 1-methylstilbene.
e Reaction run in MeOH.
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Synthesis of an amino alcohol precursor with control of abso-
lute stereochemistry could be achieved through a variety of meth-
ods including selective-Strecker reactions,4 the use of chiral
auxiliaries such as the Williams diphenyloxazinone,5 or through
recently developed techniques such as the DuBois nitrene insertion
protocol.6 In addition, phase-transfer catalysts, such as those
developed by Maruoka and co-workers, have been shown to be
effective in preparing quaternary amino acid precursors with high
enantioselectivity and chemical yield.7 Initial attempts at bis-alkyl-
ation of the known glycine imine 6 using a chiral phase-transfer
catalyst via the reported one-pot protocol8 led to incomplete alkyl-
ation. However, employing the standard two-step protocol using
n-BuLi to install the allyl group followed by CsOH�H2O and
(S,S)-3,4,5-trifluorophenyl-NAS bromide9 to enable the second
alkylation with 1-bromo-4-(3-bromoprop-1-en-2-yl)benzene10

led to greater conversion and higher isolated yields.11 The chiral
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Scheme 2. Synthesis of
imine intermediate was hydrolyzed with citric acid to provide
the quaternary amino ester 5 in 97% ee on a multi-gram scale. Pro-
tection of the amine as the Boc carbamate facilitated a Ru-cata-
lyzed ring-closing metathesis using the Grubbs–Hoveyda second
generation catalyst.12

This provided rapid access to multi-gram quantities of 4
(Scheme 2), which could be used for analog synthesis via cross-
coupling reactions of the aryl bromide moiety. To enable the
synthesis of compound 2, an n-octyl chain was installed using
standard Suzuki coupling conditions followed by reduction of the
ester to the corresponding alcohol with LiBH4 resulting in cyclo-
pentene intermediate 7.

Compound 7 provided a reasonable scaffold with which to
investigate methods for installing the second stereogenic center.
A number of methods for asymmetric hydrogenation of olefins
have been reported including the Iridium–threoninephosphinite–
oxazoline (Ir[COD]ThrePHOX) catalysts developed by Pfaltz and
co-workers that have been shown to provide excellent enantiose-
lectivities for trisubstituted olefins without the need for substrate
complexation.13 However, evaluation of the Pfaltz catalyst14

system on the functionalized cyclopentene 7 resulted, surprisingly,
in no conversion of the starting material (Table 1, entries 1
and 2).15

Control experiments using 1-methylstilbene, both with and
without the cyclopentene 7, showed excellent conversion of the
acyclic trisubstituted olefin, and no catalyst inhibition by the cyclo-
pentene substrate 7 (Table 1, entries 3 and 4).

Crabtree’s catalyst was also screened to evaluate a substrate di-
rected approach utilizing either the primary alcohol or it’s t-butyl
ester precursor moiety for catalyst complexation.16 However, only
modest de’s were observed, presumably due to the competing
directing potential of the Boc carbamate group (Table 1, entry 5).
A further screen of catalysts, which included heterogeneous hydro-
genation catalysts, identified Pd/BaSO4 as a promising reagent (Ta-
ble 1, entry 6). The Pd/BaSO4 hydrogenation system provided
compound 8 as an 85:15 mixture of diastereomers, favoring the
stereochemistry (1R,3S) found in compound 2. This mixture could
be further enriched to a 95:5 mixture by recrystalization from hep-
tane.17 To complete the synthesis of compound 2, the Boc group
was removed via hydrolysis at elevated temperature. The remain-
ing undesired stereoisomer was removed by semi-preparative chi-
ral HPLC to furnish compound 2 in >98% de.
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In conclusion, we have developed a stereoselective route that
was used to successfully provide gram-quantities of the S1P1 ago-
nist 2. This route demonstrates excellent enantioselectivity in set-
ting the stereochemistry at the quaternary center which facilitates
moderate stereo-induction at the benzylic site. This route also en-
abled the preparation of multi-gram quantities of 4, an intermedi-
ate suitable for analog synthesis and SAR evaluation. Additional
details of analog synthesis efforts will be published in due course.
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